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Relativistic effects in hydrogenlike atoms embedded in Debye plasmas
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Spectra of hydrogenlike atoms embedded in a Debye plasma are investigated. The state energies and the
transition rates are studied using a fully relativistic formalism based on the Dirac equation. The effect of the
plasma is described by introducing an exponential screening to the nuclear Coulomb pdteatiakbbye
screening Systematic trends with respect to both the nuclear charge and the screening parameter are observed
for all calculated quantities. The pattern of splittingssf,,, np;, andnpg, is modified in a specific way due
to the combined relativity and plasma effect. The transition rates decrease with an increase of the Debye
parameter as well as with an increaseZof
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I. INTRODUCTION Z e M

VuD)==——, (1)

Studies of the spectral properties of ionized atoms embed-

ded in plasma are important not only for plasma diagnosticsvhere « is the Debye-screening parameter. For a hydrogen-

but also for understanding stellar spectra and atmospheritke atom the corresponding radial Sctileger equation is
opacities. The effect of a plasma may be conveniently de-

scribed by an exponential screening potential, known inOL 1d?> I1(1+1) Ze ™

- Em(Z,,LL) Rm(Z,,u;r):O.

@

plasma physics as th®ebye or Debye-Higkel potential
[1-4]. The same potential appears in several other areas
physics. In particular, in nuclear physics it is known as the
Yukawa potentiand in solid-state physics it is called the Upon making the substitution

Thomas-Fermi potential Consequently, the relevance of

studies of the spectra of quantum systems in which interac- p=2r 3)
tions are governed by this kind of potential extends far be-

yond the plasma physics. Many interesting results as well a§9- (2) becomes

references to other works on this subject may be found in 5 “ap
Refs.[5—-8]. Also the we have contributed to this area of _ Ed_ I(1+1) _ € —en(N)
researci9—12). However, all the works we are familiar with 2 dp? 2p°® nl
are concerned with nonrelativistic descriptions of the spectra (4)
of Debye-screened atoms. The effects of the plasma strength,

of the electron correlation, and of the degree of ionizationWhere
were studied in detail and, at least for small Debye-screened
atoms, are already rather well understood. On the contrary,

the influence of relativistic effects, though expected to bey,
important (particularly for highly ionized specigs has

hardly been mentioned in the literature. The present study is em(N)= Em(Z,M)/Zz:Em(lJ\)- (6)
aimed at filling in this gap. We investigate the influence of

relativistic effects on the spectra of Debye-screened hydrothe normalization of the radial functions

genlike atoms. The corresponding Dirac equation is solved
numerically for a range of Debye parameters and for a num-
ber of nuclear charge values. The present study is concerned
with the ground states and two lowest excited state¥Sgh,

%P4, and 2Py, symmetries. The theoretical model is out- and Eqs(2) and(4) imply that

lined in Sec. Il while the results are discussed in Sec. Il ‘

Hartree atomic units are used throughout this paper. (Rai(Z, w30 [Ry1/(Z, i)

=Z *(Ry(LN;D)[rM Ry (INT)). (8)

T2q2 2

Rn|(1y)\5p):0|

N=ulZ (5

o

f |Rnl(zyﬂ;r)|2dr:fm|RnI(1rk;P)|2dP:ly (7)
0 0

II. THE MODEL . .
Relation(6) between the energy levels and relati@ be-

The Debye potential describing the interaction betweertween the matrix elements lead to the derivation of the spec-
the nuclear charg& and an electron is given by tral properties of an arbitrary one-electron ion from the cor-
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g J(An,n—2)21+n (n=1)\ /2. (16)
N -048 n?(n\/2+1)2"
} . . . .
8] A similar analysis may be performed for atoms described
0.5 by either the Diradin the one-electron caser by the Dirac-
Coulomb (in the many-electron cagseequation. The radial
Dirac equation for a hydrogenlike atom is
0.52
Ze M E (Z.w) k d )
- —Enjls,p Cl—— 57
0.54 1 1 1 1 1 | 1 1 r dl'
0 001 002 003 004 005 006 007 k d Ze M )
A c r dr r 2C EH|J(21M)
FIG. 1. Scaled ground state energl:‘e@/ZZEslsﬂ2 against the L .
. L Rni(Z, ;1)
screening parametev for several values oEZ. The nonrelativistic I -0 (17)
values ofe;s are Z independent and, up to the width of the line, REH(Z,M;r) '
overlap with the relativistiZ =1 ones. All quantities are in atomic
units. where k==*(j+3) for £=j*3 is the Dirac angular mo-

mentum quantum numbdﬂhlj(Z,u;r) ande,j(Z,,u;r) are

responding properties of the hydrogen atom with a properlythe radial parts of the large and small components of the

scaledEq. (5)] Debye-screening parameter. wave function, respectivelf,,;(Z,«) is the energy relative
Alternatively, Eq.(4) may be rewritten as to ¢? (the rest energy of electrgyrand the remaining symbols
, _ have their usual meaning. The scaling, E8), and the sub-
[HotVyi—en(M)]Rn(1A;p)=0, (9 stitution of Eq.(5) results in the equation

whereH,, is the Hamiltonian of a free hydrogenlike atom and e M 1 ( x d )

- —eni({N 7l e

]_—e*)‘l’ nlj(g ) g p dp

[ S (10 1k d e 2
vl T e

is the perturbation due to the Debye screening.<€1, as it

is in majority of realistic plasmas, the perturbation is small th(&)\ip)
and the first-order corrections may give an adequate estimate X SJ _ =0, (18
of the shift of the energy levels. Thus, up to the first order of Rnij(&A5p)
perturbation theory, the energy may be written as where {=2/c and e =Eq 172, Equation(18), similar to
sn|(x)=en|(0)+JE)“"—J§”", (11) Eq. (17), depends on two parameters. However, from Eq.
(18) one can clearly see that the relativistic effécg., the
wheree,,(0) is the eigenvalue dfl, and c-dependent contributiohsre determined, as in the case of a
free atom, by the rati@/c only. As one can easily note,
I =(R,(1,0;0)|€ M/p|Rp(1,0;0)). (12 contrary to the nonrelativistic casg~1 results do not de-
termine their counterparts for larger valueszof
Using the explicit form of the eigenfunctions bfy, i.e., of The perturbative corrections to the relativistic energies
Rn1(1,0;0), one can easily evaluate the perturbative correcmay also be determined in a way similar to that in the non-
tion with relativistic theory. Then,
y 1[N+l (na/2)% enj({N) =2;(£,0)+ T = g (M)
IMW== —————F(—k,—k,2+2x), ,
nzl k- J(nn/2+1) 3 =enj(£,0~Ani(L,0)+ONY), (19
13
. wheree;(£,0) is the Dirac energy of a free atom,
wherek=n—1—1, x=2/(n\)?, andF is the Gauss hyper- _
geometric functiorf13]. In particular, JM=(e M/ p), (20)
(N) _ 1 /12
I =1/m?, (14) Apj(LN)==N+32%p), (21
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FIG. 2. Excitation energies, scaled By 2, for Z=1,20,40,60, against. The lowest curves correspond to the nonrelativistic caséwmd

to the thickness of the linggo the relativisticZ=1 case. The consecutive groups of curves correspod=t20, Z=40, andZ=60. All
quantities are in atomic units.

and Apii(EN)==N+N(3N2= k?)Ti,— kN, J/(4N,). (23
(Q)=(Ry;(£,0:p)|QA|Ry;;(£,0:p)) Here N,.=\fi2+{?, HA,=n,+s., n,=n—|«|, and s,

=Kk?— 2. The explicit expressions fof ("), n=1,2 ma

+HRS(LOPIQIRS (£0p)), (22 Ko< plicit exp v y

easily be derived from the radial hydrogenic Dirac wave
functions. Then,
where() is a scalar operator.

The general formulas fo7{""") are rather cumbersome.
However, for our purposes it is sufficient to use much sim-
pler expressions for several special cases and for the expec- (2.1.312) o1
tation values of several powers ¢f) [14,15. In particular, INTTO=[28(1 4+ M) 2],

jg\l,o,l/Z): [Sl(l+ }\/2)251] —1’
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-130 /-130 / FIG. 3. Oscillator strengths
corresponding tep;— 1s,, tran-

sitions divided by 2+1 and mul-

-120

507 " \ | | | ' X \ | . | | tiplied by 1. The lowest curves
0 001 002 003 004 005 006 0 001 002 003 004 005 006 correspond to the nonrelativistic
15 J ] k T T 1B T T T ' T T case andup to the width of the
lines) to the relativisticZ=1 case.
The consecutive curves corre-
3P >l spond toZ=10, 20, 30, 40, 50,
60, 70.
27 1 1 1 1 1 1 _27‘ 1 1 1 1 1 1
0 0.01 0.02 0.03 0.04 0.05 0.06 0 0.01 0.02 0.03 0.04 0.05 0.06
A A
j(f'o'l’z)z[1—)\N2(N§—4)/2+ A2N,(N,—1) been chosen to assure that the resulting energies are correct
to 1 millihartree. The calculations have been performed for
X(Na+2)/4]/A, 0<\<0.065. The largest value af corresponds to the limit
(211/2)_ ) 5 of stability of a nonrelativistic hydrogenlike atom in it94
TN TP=[1-MNN2(NZ = 4)/2= N Np(No + 1) configuration. The calculated quantities include: ground state
X (Np— 2)/4]/A, (24) ene_rgies(Fig. D, exgitation energie_$_Fig. 2) and emissipn
oscillator strength$Fig. 3). All quantities are plotted against
whereA=N2(N§—2)(1+)\N2/2)N§. Similarly [14,15 \ for several values oZ.r:.anging from 1 to 70. '
The scaled nonrelativistic ground state energigsand
T = (n, + «k?/s,)IN3. (25)  the relativistic oneg,; are displayed in Fig. 1. The nonrel-
ativistic energies do not depend drand are represented by
As one can see from E@23), the highest line in the figure. The consecutive lines corre-
B 5 3 spond to the relativistic energies fa@r=20,40,60. The de-
8n,l+1,j_8n,l,j_|"|7‘ 12+ 0O(\"). (26) pendence on is, for A<1, dominated by the linear term. For
| : larger \, the departure from linearity becomes considerable
n particular,

and the slope of the corresponding curves gradually de-
825, E2 /2=%)\2(1+)\N2)‘N2. (27)  creases, as can be seen from E(9), (20), and (24). A
. L similar behavior of the total energies appears also in the non-

Hence, the states which differ by the Sign,o'br”y7 degen_ relativistic m0de|i9—1l] The relativistic effeCtS, described
erate in a free Dirac atom, are split due to the Debye screerly the Z dependence of the scaled energies, as one should
ing. The splitting is proportional ta2, and the energy of the €Xpect, grow increasingly fast with

state with the lower orbital angular momentum is always The excitation energies scaled byzi/are plotted against
lower. N in Fig. 2. Here again the nonrelativistic values ©f

—&4¢ are Z independent. They are represented by the two
lowest curvegthe solid curves correspond to the transitions
to =0 and the dotted ones fo=1 stateg The splitting
The eigenvalue equatiorid) and (18) have been solved between these energy levels increases with increasifige
numerically. The accuracy of the integration procedure haselativistic excitation energies are shown fér 20,40,60.

IIl. RESULTS AND DISCUSSION
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TABLE I. Comparison of the exacts},—2l; excitation energies;ksn“-=sn|j—slsl/2 with the ones
obtained using the first-order perturbation corrections; nr standadorelativisticand § is the difference
between the exact and the perturbational energy. Energies are in millihartrersrabdhr *.

4 N A8251/2 ) Aszpm ) A82p3/2 )

nr 0.000 375.000 0.000 375.000 0.000 375.000 0.000
0.010 374.781 0.000 374.829 0.000 374.829 0.000
0.020 374.148 —0.002 374.333 —0.002 374.333 —0.002
0.030 373.130 —0.010 373.531 —0.009 373.531 —0.009
0.040 371.755 —0.029 372.440 —0.028 372.440 —0.027
0.050 370.045 —0.065 371.076 —0.063 371.076 —0.063
0.060 368.021 —0.125 369.450 —0.122 369.450 —0.122
0.065 366.898 —0.166 368.543 —0.163 368.543 —0.163

20 0.000 376.850 0.000 376.850 0.000 377.524 0.000
0.010 376.633 0.000 376.681 0.000 377.354 0.000
0.020 376.004 —0.002 376.189 —0.002 376.857 —0.002
0.030 374.994 —0.010 375.395 —0.009 376.055 —0.009
0.040 373.629 —0.028 374.315 —0.027 374.964 —0.027
0.050 371.931 —0.064 372.963 —0.062 373.599 —0.063
0.060 369.921 —0.123 371.352 —0.121 371.973 —-0.121
0.065 368.804 —0.164 370.453 —0.161 371.065 —0.162

40 0.000 382.644 0.000 382.644 0.000 385.457 0.000
0.010 382.432 0.000 382.480 0.000 385.286 0.000
0.020 381.818 —0.002 382.004 —0.001 384.789 —0.002
0.030 380.831 —0.009 381.233 —0.009 383.986 —0.009
0.040 379.496 —0.027 380.184 —0.026 382.894 —0.027
0.050 377.834 —0.062 378.871 —0.060 381.527 —0.062
0.060 375.865 —0.119 377.305 —0.116 379.897 —0.122
0.065 374.771 —0.159 376.430 —0.155 378.987 —0.161

60 0.000 393.229 0.000 393.229 0.000 400.044 0.000
0.010 393.027 0.000 393.075 0.000 399.873 0.000
0.020 392.438 —0.002 392.624 —0.002 399.375 —0.002
0.030 391.490 —0.009 391.894 —0.008 398.570 —0.009
0.040 390.207 —0.025 390.900 —0.024 397.475 —0.027
0.050 388.608 —0.058 389.654 —0.055 396.103 —0.062
0.060 386.712 —0.111 388.166 —0.107 394.468 —0.120
0.065 385.657 —0.148 387.334 —0.144 393.554 —0.161

Splittings betweers,;, and p,, states increase as® [cf.,  represented by the consecutive curves and correspond, con-

Egs.(26) and(27)]. In the first approximation these splittings secutively, to Z2=10,20,30,40,50,60,70. The systematic
are Z independent. It is interesting to note that the fine-trends and the importance of relativistic effects are clearly
structure splittings between states of the shahecrease with  seen from the f|gur_e. ) )
increasingh. The results obtained show that for a correct interpretation
A comparison between the exact energies and their appf the spectra of ionized atoms in plasmas inclusion of rela-
proximate, first-order perturbation values, are given in Fig. 1livistic effects is necessary, particularly for higher degrees of
(total energiesand in Table I(excitation energigs As one  lonization. The behavior of excitation energies and transition

can see, in the range afexplored in this work, the pertur- rates as functions of the plasma strength and of the degree of

bational energies are very close to the exact ones and thé'ﬁnization are regular. The first-order perturbation theory

accuracy is adequate for spectroscopic studies of atoms erfllVeS @ very good approximation of the locations of the en-
bedded in plasmas. The differenédetween the exact and €'Y levels. Consequently, for an approximate description of

the perturbational energies corresponding $g;4-21; tran- the spectra the fc_)rmulas derived from the perturbational ex-
sitions, shown in Table I, never exceed 0.05%. pressions are quite adequate.

Emission oscillator strengthsnultiplied by 1000 and di-
vided by 2+1) for transitions fromnp;, and nps,, n
=2,3, to the ground state are plotted against Fig. 3. The This research was supported by the program of Indo-
nonrelativistic oscillator strengths areindependent and are Polish Scientific and Technological Cooperati@rant No.
represented by the lowest curves. The relativistic ones artNT/POL/P-9/2000.
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